Derin öğrenme ile zaman serilerinin gerçek zamanlı tahmini

dc.authoridDanışman: 139883en_US
dc.contributor.advisorÇıbıkdiken, Ali Osman
dc.contributor.authorKarakoyun, Ebru Şeyma
dc.date.accessioned2020-09-14T12:28:36Z
dc.date.available2020-09-14T12:28:36Z
dc.date.issued2018en_US
dc.date.submitted2018-06-28
dc.departmentNEÜ, Fen Bilimleri Enstitüsü, Endüstri Mühendisliği Anabilim Dalıen_US
dc.description.abstractZaman serisinde, bir olay sırasında alınan ölçümler ardışık zaman dilimi içinde uygun bir sırada düzenlenmiş olarak bulunur. Zaman serileri; iletişim, sağlık, hava tahmini ve finans gibi birçok alanda kullanılmaktadır. Finansal veri içeren zaman serilerinin analizinde; istatiksel yaklaşım için ARIMA ve makine öğrenmesi yaklaşımı için Uzun-Kısa Süreli Hafıza derin öğrenme mimarisi kullanılmıştır. Tahmin modellemesi için adımlar önerilerek, bu adımlar hisse senedi ve Bitcoin fiyat tahminlemesinde uygulanmıştır. Tahminleme performans ölçülerine göre sonuçlar değerlendirilerek, Uzun-Kısa Süreli Hafıza derin öğrenme mimarisinin daha başarılı olduğu gözlemlenmiştir. Bu Uzun-Kısa Süreli Hafıza mimarisinin, zaman serilerinin tahmininde geleneksel istatistik yöntemlere göre daha uygun olduğunu göstermektedir. Ayrıca elde edilen derin öğrenme modeline dayanan bir anlık hisse senedi tahminleme web arayüzü geliştirilmiştir.en_US
dc.description.abstractIn the time series, the measurements taken during an event are arranged in a suitable order within the consecutive time slot. Time series are used in communication, health, weather forecasting and finance. ARIMA for the statistical approach and LSTM deep learning architecture for the machine learning approach have been used in the analysis of time series containing financial data. By suggesting steps for forecasting modeling, these steps have been implemented in stock and Bitcoin price prediction. It has been observed that the LSTM deep learning architecture is more successful by evaluating the results according to the estimation performance measures. This shows that the LSTM architecture is more appropriate in predicting time series than traditional statistical methods. In addition, an instant stock forecasting web interface based on the acquired deep learning model has been developed.en_US
dc.identifier.citationKarakoyun, E. Ş. (2018). Derin öğrenme ile zaman serilerinin gerçek zamanlı tahmini. (Yayınlanmamış yüksek lisans tezi) Necmettin Erbakan Üniversitesi Fen Bilimleri Enstitüsü Endüstri Mühendisliği Anabilim Dalı, Konya.en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12452/3803
dc.language.isotren_US
dc.publisherNecmettin Erbakan Üniversitesi Fen Bilimleri Enstitüsüen_US
dc.relation.publicationcategoryTezen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectZaman serisien_US
dc.subjectDerin öğrenmeen_US
dc.subjectMakine öğrenmesien_US
dc.subjectUzun-kısa süreli hafızaen_US
dc.subjectTime seriesen_US
dc.subjectPredictionen_US
dc.subjectDeep learningen_US
dc.subjectMachine learningen_US
dc.subjectLong-short term memoryen_US
dc.titleDerin öğrenme ile zaman serilerinin gerçek zamanlı tahminien_US
dc.title.alternativeTime series prediction in real time using deep learningen_US
dc.typeMaster Thesisen_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
ebru şeyma karakoyun.pdf
Boyut:
2.04 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Yüksek Lisans Tezi
Lisans paketi
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: