Thermionic Emission of Atomic Layer Deposited MoO3/Si UV Photodetectors
Küçük Resim Yok
Tarih
2023
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Mdpi
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
Ultrathin MoO3 semiconductor nanostructures have garnered significant interest as a promising nanomaterial for transparent nano- and optoelectronics, owing to their exceptional reactivity. Due to the shortage of knowledge about the electronic and optoelectronic properties of MoO3/n-Si via an ALD system of few nanometers, we utilized the preparation of an ultrathin MoO3 film at temperatures of 100, 150, 200, and 250 degrees C. The effect of the depositing temperatures on using bis(tbutylimido)bis(dimethylamino)molybdenum (VI) as a molybdenum source for highly stable UV photodetectors were reported. The ON-OFF and the photodetector dynamic behaviors of these samples under different applied voltages of 0, 0.5, 1, 2, 3, 4, and 5 V were collected. This study shows that the ultrasmooth and homogenous films of less than a 0.30 nm roughness deposited at 200 degrees C were used efficiently for high-performance UV photodetector behaviors with a high sheet carrier concentration of 7.6 x 10(10) cm(-2) and external quantum efficiency of 1.72 x 10(11). The electronic parameters were analyzed based on thermionic emission theory, where Cheung and Nord's methods were utilized to determine the photodetector electronic parameters, such as the ideality factor (n), barrier height (f(0)), and series resistance (R-s). The n-factor values were higher in the low voltage region of the I-V diagram, potentially due to series resistance causing a voltage drop across the interfacial thin film and charge accumulation at the interface states between the MoO3 and Si surfaces.
Açıklama
Anahtar Kelimeler
Moo3, Electric And Optoelectronics, Ultrathin Films, Thermionic Emission, Uv Illuminations
Kaynak
Materials
WoS Q Değeri
Scopus Q Değeri
Cilt
16
Sayı
7