Zeytinyağı eldesinde üretim koşulları ve bazı katkıların yağın kalite özellikleri üzerine etkileri
Yükleniyor...
Dosyalar
Tarih
2023
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Necmettin Erbakan Üniversitesi Fen Bilimleri Enstitüsü
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
Zeytinyağı endüstrisinde, üretim tesisinin teknolojik tercihleri, proses boyunca işlenmekte olan zeytinlerde gerçekleşen biyokimyasal faaliyetleri dolayısıyla son ürünün kalitesini etkilemektedir. Fenolik bileşiklerin, sızma zeytinyağının besinsel faydaları ve organoleptik özellikleri ile doğrudan ilişkili olduğu iyi bilinmektedir. Sızma zeytinyağına hidrofilik fenollerin geçişi, zeytin meyvesinin başlangıçtaki fenolik glikozit içeriği ve yağ ekstraksiyon işlemi sırasında bu glikozitler üzerindeki hidrolitik ve oksidatif enzimlerin aktivitesi ile ilgilidir. Fenolik glikozitleri hidrolize eden endojen β-glukozidaz enzimi ile polifenol oksidaz (PPO) ve peroksidaz (POD) gibi oksidoredüktazlar sızma zeytinyağının fenolik içeriğini etkileyen ana biyokimyasal faktörlerdendir. Söz konusu çalışmada zeytinyağı ekstraksiyonu sırasında PPO ve POD enzimlerinin aktivitesi inhibe edilerek, üretilen yağın fenolik profili değerlendirilmiştir. Çalışmada öncelikle optimum kırma hızı tespit edilmiş ve yanıt yüzey metodoloji (YYM, response surface methodology RSM) yöntemi ile belirlenen oranlarda oksalik asit (OA), L-sistein (L-sis), askorbik asit (AA) ve magnezyum klorür (MgCl2) malaksiyon sırasında eklenmiştir. Zeytin hamuruna ilave edilen bu maddeler sonucunda elde edilen zeytinyağının bazı fiziksel ve kimyasal özellikleri üzerindeki etkileri geleneksel uygulama ile karşılaştırılarak incelenmiştir. Bunun yanında, zeytinyağının besinsel ve duyusal kalitesi de araştırılmıştır. Optimum kırma hızında (1000 rpm) kırılan zeytinlere malaksiyon aşamasında belirlenen oranlarda inhibitör nitelikli katkı maddeleri ilave edilerek 20 adet örnek elde edilmiştir. Bu maddelerin ilavesi ile örneklerin yağ veriminde ve serbest yağ asiti (%1 L-sis + %1 MgCl2 ve %0.5 OA + %0.5 L-sis + %0.5 AA + %0.5 MgCl2 hariç) değerlerinde artış görülmüştür. Peroksit sayısı, K232 ve K270 değerlerinde çoğunlukla düşüş görülürken, oksidatif stabilite genelde artmıştır. Peroksit sayısı ve K232 değerlerindeki artış ile oksidatif stabilitedeki düşüş %2 MgCl2 kullanılan örnekte belirgin olarak görülmüştür. Zeytinyağlarının toplam fenolik madde ve DPPH değerlerinde artış tespit edilmiştir. β-karoten ağartma yöntemiyle belirlenen antioksidan aktivite değerinde de artışlar görülürken, %2 MgCl2 ve %2 AA kullanıldığında, diğer katkı maddelerinin tek başına kullanımlarına göre artışlar belirlenmiştir. Zeytin hamurlarının toplam fenolik madde değerleri açısından en yüksek değerler %2 AA ilave edilen örnekte, en düşük sonuç ise kontrol örneğinde bulunmuştur. Zeytin hamurlarında inhibitör katkılar DPPH değerlerinde artışa neden olurken, β-karoten ağartma değerinde azalma tespit edilmiştir. Uygulamalar arasında POD, PPO ve β-glukozidaz enzim aktivitesi sırasıyla 5.26-100 U/gr, 33.08-100 U/gr ve 138.78-218.11 U/gr aralığında değişmiştir.
In the olive oil industry, the technological preferences of the production facility affect the quality of the final product due to the biochemical activities that take place in the olives being processed during the process. It is well known that phenolic compounds are directly related to the nutritional benefits and organoleptic properties of extra virgin olive oil. The transition of hydrophilic phenols to extra virgin olive oil is related to the initial phenolic glycoside content of the olive fruit and the activity of hydrolytic and oxidative enzymes on these glycosides during the oil extraction process. The endogenous β-glucosidase enzyme that hydrolyzes phenolic glycosides and oxidoreductases such as polyphenol oxidase (PPO) and peroxidase (POD) are the main biochemical factors affecting the phenolic content of extra virgin olive oil. In the study in question, the phenolic profile of the oil produced was evaluated by inhibiting the activity of PPO and POD enzymes during olive oil extraction. In the study, firstly, the optimum crushing rate was determined and oxalic acid (OA), L-cysteine (L-cys), ascorbic acid (AA) and magnesium chloride (MgCl2) were added during the malaxation stage at the rates determined by the response surface methodology (YYM, response surface methodology RSM) method. The effects on some physical and chemical properties of the olive oil obtained as a result of these substances added to the olive paste were examined by comparing them with the traditional application. In addition, the nutritional and sensory quality of olive oil was also investigated. 20 samples were obtained by adding inhibitory additives at the rates determined during the malaxation stage to the olives crushed at the optimum crushing rate (1000 rpm). With the addition of these substances, an increase was observed in the oil yield and free fatty acid values (excluding 1% L-cys + 1% MgCl2 and 0.5% OA + 0.5% L-cis + 0.5% AA + 0.5% MgCl2) of the samples. While peroxide values, K232 and K270 values were mostly decreased, oxidative stability values were mostly increased. The decrease in oxidative stability with the increase in the peroxide and K232 values was evident in the sample using 2% MgCl2. It was determined that the total phenolic substance and DPPH values of olive oils increased. While increases were observed in the antioxidant activity value determined by the β-carotene bleaching method, when 2% MgCl2 and 2% AA were used, increases were determined compared to the use of other additives used only. In terms of the total phenolic content of olive pastes, the highest values were found in the sample to which 2% AA was added, and the lowest result was found in the control sample. While inhibitory additives caused an increase in DPPH values in olive pastes, a decrease in β-carotene bleaching value was detected. Among treatments, POD, PPO and β-glucosidase enzyme activity ranged between 5.26-100 U/gr, 33.08-100 U/gr and 138.78-218.11 U/gr, respectively.
In the olive oil industry, the technological preferences of the production facility affect the quality of the final product due to the biochemical activities that take place in the olives being processed during the process. It is well known that phenolic compounds are directly related to the nutritional benefits and organoleptic properties of extra virgin olive oil. The transition of hydrophilic phenols to extra virgin olive oil is related to the initial phenolic glycoside content of the olive fruit and the activity of hydrolytic and oxidative enzymes on these glycosides during the oil extraction process. The endogenous β-glucosidase enzyme that hydrolyzes phenolic glycosides and oxidoreductases such as polyphenol oxidase (PPO) and peroxidase (POD) are the main biochemical factors affecting the phenolic content of extra virgin olive oil. In the study in question, the phenolic profile of the oil produced was evaluated by inhibiting the activity of PPO and POD enzymes during olive oil extraction. In the study, firstly, the optimum crushing rate was determined and oxalic acid (OA), L-cysteine (L-cys), ascorbic acid (AA) and magnesium chloride (MgCl2) were added during the malaxation stage at the rates determined by the response surface methodology (YYM, response surface methodology RSM) method. The effects on some physical and chemical properties of the olive oil obtained as a result of these substances added to the olive paste were examined by comparing them with the traditional application. In addition, the nutritional and sensory quality of olive oil was also investigated. 20 samples were obtained by adding inhibitory additives at the rates determined during the malaxation stage to the olives crushed at the optimum crushing rate (1000 rpm). With the addition of these substances, an increase was observed in the oil yield and free fatty acid values (excluding 1% L-cys + 1% MgCl2 and 0.5% OA + 0.5% L-cis + 0.5% AA + 0.5% MgCl2) of the samples. While peroxide values, K232 and K270 values were mostly decreased, oxidative stability values were mostly increased. The decrease in oxidative stability with the increase in the peroxide and K232 values was evident in the sample using 2% MgCl2. It was determined that the total phenolic substance and DPPH values of olive oils increased. While increases were observed in the antioxidant activity value determined by the β-carotene bleaching method, when 2% MgCl2 and 2% AA were used, increases were determined compared to the use of other additives used only. In terms of the total phenolic content of olive pastes, the highest values were found in the sample to which 2% AA was added, and the lowest result was found in the control sample. While inhibitory additives caused an increase in DPPH values in olive pastes, a decrease in β-carotene bleaching value was detected. Among treatments, POD, PPO and β-glucosidase enzyme activity ranged between 5.26-100 U/gr, 33.08-100 U/gr and 138.78-218.11 U/gr, respectively.
Açıklama
Doktora Tezi
Anahtar Kelimeler
Enzim Aktivitesi, Katkı Maddesi, PPO Enzim Aktivitesi, POD Enzim Aktivitesi, Zeytinyağı, Enzyme Activity, Additive, PPO Enzyme Activity, POD Enzyme Activity, Olive Oil
Kaynak
WoS Q Değeri
Scopus Q Değeri
Cilt
Sayı
Künye
Acar, A. (2023). Zeytinyağı eldesinde üretim koşulları ve bazı katkıların yağın kalite özellikleri üzerine etkileri. (Yayımlanmamış doktora tezi). Necmettin Erbakan Üniversitesi, Fen Bilimleri Enstitüsü Gıda Mühendisliği Anabilim Dalı, Konya.