Proton Nuclear Magnetic Resonance Spectroscopy Analysis of Mixtures of Chlorhexidine with Different Oxidizing Agents Activated by Photon-Induced Photoacoustic Streaming for Root Canal Irrigation

Küçük Resim Yok

Tarih

2020

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Mary Ann Liebert, Inc

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

Objective: The aim of this in vitro study was to investigate the possible interactions between photon-induced photoacoustic streaming (PIPS (TM))-activated oxidizing agents and 2% chlorhexidine digluconate. Background data: There is no information about the safety of laser-activated oxidizing agents in combination usage with chlorhexidine gluconate. Materials and methods: Groups were designed as follows G1: 98% para-chloroaniline (PCA); G2: 2% chlorhexidine (CHX); G3: 5.25% sodium hypochlorite (NaOCl) +2% CHX; G4: 5.25% NaOCl (30 sec PIPS activated) +2% CHX; G5: 5.25% NaOCl (60 sec PIPS activated) +2% CHX; G6: 3.5% chlorine dioxide (ClO2) + 2% CHX; G7: 3.5% (ClO2) (30 sec PIPS activated) +2% CHX; G8: 3.5% (ClO2) (60 sec PIPS activated) +2% CHX. The laser-irrigation protocol was performed with an erbium:yttrium-aluminum-garnet laser with a wavelength of 2940 nm equipped with a 140 mm long endodontic fiber tip (PIPS) using 10 mJ at 15 Hz (0.15 W), per pulse operating outputs. Groups were analyzed with proton nuclear magnetic resonance spectroscopy, using PCA as an internal standard. Results: No free PCA was formed in any groups of mixtures or after PIPS activation. Conclusions: Mixing of 3.5% ClO2 and 2% CHX does not form bulky precipitates, unlike the mixture NaOCl + CHX. PIPS activation does not cause changes in reactions of oxidizing agents.

Açıklama

Anahtar Kelimeler

Chlorhexidine, Chlorine Dioxide, Nmr Spectroscopy, Photon-Induced Photoacoustic Streaming, Sodium Hypochlorite

Kaynak

Photobiomodulation Photomedicine And Laser Surgery

WoS Q Değeri

Q3

Scopus Q Değeri

Cilt

38

Sayı

6

Künye