Numerical Analysis of InGaN/GaN Intermediate Band Solar Cells Under X-sun Concentration, In-compositions, and Doping: Unlocking the Potential of Concentrated Photovoltaics

Küçük Resim Yok

Tarih

2024

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Springer Heidelberg

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

Our research focuses on advancing solar energy through the study of nano- and microelectronic structures. Using the finite element method, we analyze key characteristics of InGaN/GaN intermediate band solar cells (IBSC), including refractive index, absorption coefficient, short-circuit current, open-circuit voltage, fill factor, and efficiency with a focus on the X-sun concentration effect. We assess nonpolar solar cell performance at room temperature and incorporate experimental data from American Society for Testing and Materials (ASTM), encompassing AM1.5D, AM1.5G, and AM0, to analyze refractive and absorption spectra. Investigating constraints on solar cell efficiency, we find that under AM1.5G spectra, the short-circuit current is higher compared to AM1.5D and AM0. Additionally, open-circuit voltage, fill factor, and efficiency increase significantly with elevated X-sun concentration and doping. Our analysis of ASTM data indicates that InGaN-based IBSC are efficiently able to absorb the visible spectrum and withstand intense X-sun concentration, making them suitable for concentrated photovoltaic technology.

Açıklama

Anahtar Kelimeler

Cpv, Photovoltaic, Gan/Ingan, Solar Cell, Efficiency, Sun Concentration, Doping

Kaynak

Arabian Journal For Science And Engineering

WoS Q Değeri

Scopus Q Değeri

Q1

Cilt

Sayı

Künye