Endüstriyel Uygulamalar için Çok Düşük Güç Tüketen Kapasitif Sensör Geliştirilmesi

Yükleniyor...
Küçük Resim

Tarih

2022

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Necmettin Erbakan Üniversitesi Fen Bilimleri Enstitüsü

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

Kapasitif sensörler başta endüstriyel alanda olmak üzere başlıca algılama, yaklaşım, miktar tespiti, basınç ve akış tespiti gibi hassas kontrol sistemlerinde ve benzeri yüksek doğruluk gerektiren uygulamalarda kullanılmaktadır. Kullanım alanının genişliği farklı amaçları hedefleyen çalışmaların ortaya çıkmasını sağlamaktadır. Çevre şartlarından daha az etkilenme, gürültüye karşı bağışıklık veya iyi bir çözünürlük gerektiren alanlar için farklı kapasite ölçüm teknikleri geliştirilmiştir. Burada ölçüm tekniğinin belirlenmesinde maliyet, doğruluk oranı, ölçüm devrelerinin sadeliği ve benzeri gibi birçok etken göz önünde bulundurulur. En uygun ölçüm tekniği seçilerek istenen verim elde edilmeye çalışılır. Teknolojik gelişmeler ve bu alanda birçok çalışmanın yapılıyor olması, etkili, daha az yer kaplayan ve az komponent ihtiyacı duyan entegre devre yapılarının da gelişmesini sağlamıştır. Aynı zamanda gelişen teknolojik yenilikler ile düşük güçlü sistemlere ilginin arttığı ve artık bu durumun ihtiyaç olarak değerlendirildiği bir çağa girmiş bulunmaktayız. Ayrıca bu teknolojik çağın yeni çalışmalardan beklediği bir diğer husus harici bir kaynağa ihtiyaç duymadan pille çalışan ve özellikle uzun kullanım ömürleri sunabilecek karar verme mekanizmaları ve nesnelerin interneti platformlarına uyum sağlayabilecek kolay uyumlandırılabilir yapılardır. Bu bağlamda tezin amacı çok düşük güçlü sistemler için 2 seneye kadar uzun ömürler sunabilecek ortalama güç tüketimi olarak 150 µW altında kalabilecek Bluetooth Low Energy 5.0 uyumluluğu bulunan bir kapasitif sensör sistemi tasarımıdır. Özellikle Bluetooth Low Energy 5.0 kablosuz sisteminin düşük güçlü olmasının yanında en yenilikçi kablosuz servislerini de destekliyor olması nesnelerin interneti uygulamaları için uyumlandırma kolaylıkları sunmaktadır. Bu düşük güçlü sistem, anlık tepe akımı 10 mA altında kaldığından sağlayabildiği tepe akım seviyesi düşük olduğu için tercih edilmekte zorlanılan CR2450 pili ile çalışabilecek ve kompakt tasarım kolaylıkları sahip yenilikçi bir çözüm olacaktır. Endüstriyel uygulamalar için geliştirilen ve sadece mikro kontrolör ve kablosuz sistemleri destekleyen modüllerin birim maliyetinin $15 seviyelerinde olması sensör sisteminin de birim maliyetini arttırmaktadır. Amaçlanan bu sistem ile toplam maliyeti $10 altında kalabilecek şekilde çalışma yapılmıştır. Bu tez çalışmasında tasarlanan kapasitif sensör, kapasitans dijital dönüştürücü entegre yapısı ile yüksek çözünürlükte ve kararlılıkla algılama yaparak düşük güçlü sistemin temelini oluşturmaktadır. Düşük güçlü kapasitans dijital dönüştürücü entegresi düşük güçlü bir mikro kontrolör ile dijital arayüz üzerinden iletişim kurularak kontrol edilebilmektedir. Mikro kontrolör okunan kapasitif veriyi kablosuz sistemlerden olan Bluetooth Low Energy modülü arayıcılığı ile yayın yapmaktadır. Kapasitif sensör sisteminin düşük güçlü olması amaçlandığı için kullanılan komponentler düşük güçlü uygulamalara özel olarak seçilmiştir. Sistemde mikro kontrolör biriminin hem kapasitans dijital dönüştürücü entegresinin kapasitif eşik çıkış pini hem dahili gerçek zamanlı saat kaynağı aktif edilerek periyodik uyanma kesmesi ile düşük güç modundan uyandırılıp kapasitans dijital dönüştürücü entegresinden güncel veriyi okuyup Bluetooth Low Energy üzerinden yayın yaptıktan sonra tekrar uyuduğu çalışma şekli hedeflenmiştir. Bu hedef için öncelikle kapasitans dijital dönüştürücü entegresinin de ölçüm aralığında göz önünde bulundurularak yapılan çalışmalardan elde edilen kazanımlar doğrultusunda kapasitif sensör tasarım örnekleri yapılmıştır. Bu tasarım örneklerinin algılama karakteristikleri için denemeler yapılmıştır. Bu denemeler ile ölçülen değerlerin yanında kapasitans dijital dönüştürücü komut ayarları üzerinden dahili kapasitif ölçüm aralıkları genişletilerek ölçümler gözlemlenmiştir. Bu gözlem ve ölçüm çalışmalarına kapasitif sensör tasarım deneme kartları ile içerisinde farklı maddelerin algılama testleri yapılmıştır. Bu ölçümler için mısır, pirinç gibi farklı tanecik boyutunda maddeler kullanılmış ve ölçümlerinde birbirlerinden ayrımı sağlayacak farklı değerlerde kapasitif ölçüm değerleri elde edilmiştir. Bu denemelere ek olarak kapasitif sensöre parmak yaklaştırılarak da ölçümler alınmıştır. Yakınlık uzaklığı göre değişebilen ölçümler gözlemlenmiştir. Bu testler ile algılama mesafesi ve bu mesafeye etkiyen durumlar incelenerek kapasitif ölçüm ile hedeflenen iyi çözünürlük, uzak algılama mesafesi gibi tasarıma etki eden durumlar belirlenmiştir. Ayrıca mikro kontrolör düşük güç moduna alınarak kapasitans dijital dönüştürücü entegre devresinin kapasite eşik karşılaştırıcısı ile uyandırıldığı denemeler yapılıp, düşük güç akım tüketim grafiği oluşturulmuştur. Bu tüketim hedeflenen aralıktan uzak olduğu gözlemlenip kapasitans dijital dönüştürücü entegre için güç kapatma modu denenerek hedefe ulaşılmıştır. Güç tüketim çıktıları grafikler oluşturularak farklı uyanma zamanı rutinleri oluşturularak enerji tüketimleri üzerinden karşılaştırılmıştır. Kapasitif sensör, kapasitans dijital dönüştürücü, mikro kontrolör, düşük güç enerji birimi ve Bluetooth Low Energy kablosuz sistemi bir araya getirilerek pille çalışan düşük güçlü bir sistem hedefine ulaşılmıştır. Sonuç olarak kapasitif sensör tasarımını çok düşük güçlü bir sistem ile birleştirerek yenilikçi kablosuz platformlara uyumlandırarak uzun ömürlü pille çalışan sistem oluşturulmuştur. Bu değerler endüstrideki birçok uygulama için oldukça yeterlidir. Bu sistem ile algılama olaylarının gerçekleştirilebileceği taşınabilir ve akıllı platformlardan olan nesnelerin internetine uyumlandırılabilecek çok düşük tüketim enerjisine sahip sensör sonucuna ulaşılmıştır. Güç tüketimi olarak 150 µW altında kalınabilmiştir. Amaçlanan 2 sene pil tüketim ömrünün değişkenlik gösterebileceği göz önünde bulundurularak daha büyük pil yerleştirilmesi düşünülebilir. Sistem düşük güç tüketim testleri yaklaşık 6 saniye ve 11 saniye periyotta yayın süreleri ayarlanarak test edilmiştir. Testlerde ortalama güç tüketimi yaklaşık 11 dakikalık süre boyunca enerji profil arayüzü kullanılarak alınmıştır. Yayın periyodu yaklaşık 11 saniye ve ölçüm süresi yaklaşık 11 dakika olacak şekilde ortalama güç tüketimi amaçlanan tüketimin 4 katı olarak ölçülmüştür. Bazı sensörlerin 1 dakika, 2 dakika veya daha uzun periyotta yayın yaptığı ve hedeflenen çalışma için de 1 dakikada bir verinin gönderilmesi yeterli ve kabul edilebilir bir periyot olduğu göz önünde bulundurulup analitik hesap yapılarak güç tüketimi yaklaşık 108 µW hesaplanmıştır. Yayın pulse (nabız) genişliği süresi, pulse ortalama tüketimi ve Standby enerji seviyesi ortalama tüketimi değerleri üzerinden yapılan hesapla hedeflenen güç tüketimine ulaşılmıştır. Ayrıca birim maliyet olarak sadece kontrolcüsü $15 olan alternatif yapılara göre kapasitans dijital dönüştürücü entegre birim maliyeti dahil edilmediği bu durum için $10 altında bir sistem tasarım başarısına ulaşılmıştır. Seri üretime geçildiği takdirde yapılacak toptan entegre alımlarıyla zaten gayet düşük maliyetli olan çalışma tam bir fiyat-performans ürüne dönüştürülebilir.
Capacitive sensors are mainly used in the industrial field, mainly in sensitive control systems such as detection, approach, quantity detection, pressure and flow detection, and similar applications requiring high accuracy. The breadth of the usage area provides the emergence of studies targeting different purposes. Different capacitance measurement techniques have been developed for areas that require less exposure to environmental conditions, immunity to noise or good resolution. Here, many factors are taken into account in determining the measurement technique, such as cost, accuracy, simplicity of measurement circuits, and so on. By choosing the most suitable measurement technique, the desired efficiency is tried to be achieved. Technological developments and the fact that many studies are carried out in this field have also led to the development of integrated circuit structures that are effective, take up less space and require less components. At the same time, we have entered an era where the interest in low-power systems has increased with the developing technological innovations and this situation is now conside red as a necessity. In addition, another aspect that this technological age expects from new studies is decision -making mechanisms that operate with batteries without the need for an external source and that can offer especially long lifetimes and easily adaptable structures that can adapt to IoT platforms. In this context, the aim of the thesis is to design a capacitive sensor system with Bluetooth Low Energy 5.0 compatibility, with an average power consumption of less than 150 µW, which can offer long lif etimes of up to 2 years for very low power systems. In particular, the fact that the Bluetooth Low Energy 5.0 wireless system is low-power, as well as supporting the most innovative wireless services, offers convenience for adaptation for IoT applications. This low-power system will be an innovative solution with compact design easiness and will be able to work with the CR2450 battery, which is difficult to choose because its instantaneous peak current remains below 10 mA. The fact that the unit cost of modules developed for industrial applications and supporting only microcontroller and wireless systems is around $15 increases the unit cost of the sensor system. With this intended system, work has been carried out so that the total cost can remain below $10 . The capacitive sensor designed in this thesis is the basis of the low-power system by detecting with high resolution and stability with its capacitance digital converter integrated structure. The low-power capacitance digital converter IC can be controlled by communicating with a low-power microcontroller via the digital interface. The microcontroller broadcasts the read capacitive data via the Bluetooth Low Energy module, which is one of the wireless systems. Since the capacitive sensor system is intend ed to be low power, the components used are specially selected for low-power applications. In the system, it is aimed to operate the micro controller unit, in which both the capacitive threshold output pin of the capacitance digital converter IC and the internal real-time clock source are activated, and wake up from the low power mode with a periodic wake-up interruption, read the current data from the capacitance digital converter integrated and then go back to sleep after broadcasting over Bluetooth Low Energy. For this purpose, first of all, capacitive sensor design examples were made in line with the gains obtained from the studies carried out by considering the measurement range of the capacitance digital converter integrated. Trials have been made for the detection characteristics of these design examples. In addition to the measured values with these experiments, measurements were observed by expanding the internal capacitive measurement ranges over the capacitance digital converter command settings. In these observation and measurement studies, detection tests of different substances were carried out with capacitive sensor design trial cards. For these measurements, materials of different grain sizes such as corn and rice were used and capacitive mea surement values were obtained at different values that would allow discrimination from each other in their measurements. In addition to these trials, measurements were taken by bringing the finger closer to the capacitive sensor. It has been observed that measurements can vary according to the proximity distance. With these tests, the detection distance and the conditions affecting this distance were examined and the conditions affecting the design such as the good resolution targeted by the capacitive measurement and the far detection distance were determined. In addition, experiments were carried out in which the capacitance digital converter integrated circuit was awakened with the capacitance threshold comparator by putting the microcontroller in low power mode, and a low power current consumption graph was created. It was observed that this consumption was far from the targeted range and the power off mode was tried for the integrated capacitance digital converter and the target was achieved. Power consumption outputs were compared over energy consumption by creating different wake-up time routines by creating graphs. Combining the capacitive sensor, capacitance digital converter, microcontroller, low power energy unit and Bluetooth Low Energy wireless system, the goal of a battery powered low power system has been achieved. As a result, a long-lasting battery-operated system was created by combining the capacitive sensor design with a very low-power system and adapting it to innovative wireless platforms. These values are quite sufficient for many applications in the industry. With this system, the sensor with very low consumption energy, which can be adapted to the Internet of Things, which is one of the portable and smart platforms where detection events can be carried out, has been reached. The power consumption was below 150 µW. Considering that the intended 2 year battery consumption life may vary, it may be considered to place a larger battery. System low power consumption tests were tested by a djusting broadcast times in a period of approximately 6 seconds and 11 seconds. The average power consumption in the tests was taken using the energy profile interface for a period of approximately 11 minutes. The average power consumption was measured to be 4 times the intended consumption, with a broadcast period of approximately 11 seconds and a measurement time of approximately 11 minutes. Considering that some sensors broadcast for a period of 1 minute, 2 minutes or longer and sending data every 1 minu te for the targeted operation is an acceptable and sufficient period, the power consumption was calculated as approximately 108 µW by making analytical calculations. The targeted power consumption has been reached by the calculation made over the broadcast pulse width duration, pulse average consumption and Standby energy level average consumption values. In addition, a system design success of less than $10 has been achieved for this case, where the capacitance digital converter integrated unit cost is not included, compared to alternative structures with only $15 per unit cost. If mass production is started, the already low-cost work can be turned into a full price-performance product with integrated wholesale purchases.

Açıklama

Yüksek Lisans Tezi

Anahtar Kelimeler

Düşük güçlü uygulamalar, Endüstriyel uygulamalar, Nesnelerin interneti, Kapasitif sensörler, Kapasite ölçüm teknikleri, Capacity measurement techniques, Capacitive sensors, Industrial applications, Internet of things, Low power applications

Kaynak

WoS Q Değeri

Scopus Q Değeri

Cilt

Sayı

Künye

Keleş, O. (2022). Endüstriyel uygulamalar için çok düşük güç tüketen kapasitif sensör geliştirilmesi. (Yayımlanmamış yüksek lisans tezi). Necmettin Erbakan Üniversitesi, Fen Bilimleri Enstitüsü, Elektrik ve Elektronik Anabilim Dalı, Konya.