Yazar "Tinkir, Mustafa" seçeneğine göre listele
Listeleniyor 1 - 17 / 17
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Al 2024 Alaşımının Çökelme Sertleşmesi İşlemi Koşullarının Şekillendirilebilirliğe Etkisinin İncelenmesi(2015) Dilmeç, Murat; Tinkir, Mustafa; Arıkan, HüseyinBu çalışmada, uzay ve havacılık endüstrilerinde sıkça kullanılan Al 2024 sac malzemenin çökelme sertleşmesi işlemi koşullarının mekanik özelliklere, Ericksen İndeksine etkisi ANOVA analiz ve Yapay Sinir Ağı Tabanlı Bulanık Mantık yöntemleriyle incelenmiştir. Ayrıca etkili parametrelerin sac malzemenin Şekillendirme Sınır Eğrisine etkisi de incelenmiştir. Optimum ısıl işlem koşullarını belirlemek amacıyla, çözeltiye alma sıcaklığı, fırında bekletme, suya verme gecikme süreleri ve ısıtma hızının malzemenin mekanik özelliklerine ve Ericksen İndeksine etkisi öncelikle ANOVA analiz yöntemiyle incelenmiş ve elde edilen deneysel sonuçlara göre deney sisteminin yapay sinir ağı tabanlı bulanık mantık modeli oluşturulmuştur. Bu modelleme tekniğinin doğrulanmasında deneysel veriler kullanılmış ve sistem parametrelerinin şekillendirilebilirliğine etkisi üzerinde tahmin kabiliyeti belirlenmiştir. Çözeltiye alma sıcaklığının en efektif parametre olduğu ve solüsyona alma süresi ve suya verme gecikme süresinin ise daha az etkili olduğu belirlenmiştir. Sonuç olarak, 493Cde 30 dakika çözeltiye alma ve 2 sn gibi çok kısa bir sürede suya verme koşullarında optimum özelliklerin elde edilebileceği anlaşılmıştır.Öğe Deflection Control of Two-Floors Structure Against Northridge Earthquake by Using PI Controlled Active Mass Damping(Trans Tech Publications Ltd, 2013) Tinkir, Mustafa; Kalyoncu, Mete; Sahin, YusufThis paper presents an experimental investigation for deflection control of two degree of freedom building-like structure system against scaled Northridge Earthquake by using PI (Proportional-Integral) controlled active mass damping. Proposed structure consist of two floors with a cart mounted on the second floor such as active mass damping (AMID) and which is used to suppress horizontal deflections. Moreover a shake table under the structure is used to create the acceleration effect of scaled earthquake. K-p and K-i gain parameters of PI controller is determined by observing passive mode behaviour of the structure against Northridge and it is used to control cart movement according to pre-determined deflection criterias of the floors. Deflection and acceleration results of the floors are obtained separately for passive and active mode responses of the system in the form of graphics.Öğe Design and Actuator Selection of a Lower Extremity Exoskeleton(IEEE-Inst Electrical Electronics Engineers Inc, 2014) Onen, Umit; Botsali, Fatih M.; Kalyoncu, Mete; Tinkir, Mustafa; Yilmaz, Nihat; Sahin, YusufLower extremity exoskeletons are wearable robots that integrate human intelligence with the strength of legged robots. Recently, lower extremity exoskeletons have been specifically developed for transportation of disabled individuals. This paper summarizes the anthropomorphic design of a lower extremity exoskeleton named walking supporting exoskeleton (WSE). WSE has been developed to support some fundamental motions (walking, sitting, standing, etc.) of disabled individuals who lost leg muscular activities completely or partially. WSE has two degrees of freedom per leg which are powered by electrical actuators. This paper discusses critical design criteria considered in mechanical design and actuator selection of WSE.Öğe Development and performance analysis of novel design 3-DOF non-integrated runner permanent magnet spherical motor(Elsevier - Division Reed Elsevier India Pvt Ltd, 2023) Ogulmus, Ahmet Saygin; Tinkir, MustafaThe main objective of this research is to present a novel design of three degrees of freedom (DOF) nonintegrated runner permanent magnet spherical motor (NR-PMSM). In this proposed spherical motor, tilting and spinning movements are separated from each other instead of integrated motion, thus providing a more ergonomic design, easier control and increasing working performance. The NR-PMSM body block consists of stator, rotor and two covers and differs from known spherical motors with its modular design and different rotor bearings. Iron core stators are mounted separately on ABS blocks to create a lighter mid-motor body. A multi-point ball bearing mechanism is provided between the lower and upper covers, and in this way, more stable movement of the rotor is ensured without affecting the electromagnetic structure of the motor. Matlab and Ansys/Maxwell finite element programs are utilized in the electromagnetic modeling and numerical calculations of the spherical motor. At the end of all these works, the NR-PMSM prototype is realized and the angle, torque, power and speed tests of the motor are carried out by experimentally and they are compared with the simulation results. As a result of the experimental study, NR-PMSM consumes 197 W of power at a maximum speed of 156 r/min. It produces 0.04 kgf.cm spinning torque per watt consumed, tilting torque of 0.031 kgf.cm. The motor weight is 0.730 kg and it produces 10.5 kgf.cm spinning, 8.7 kgf.cm tilting torque per kg. The rotor can rotate around 360 0 full lap while moving with a maximum tilting angle of +/- 45 degrees. It is possible to summarize the subject of this study, novel design NR-PMSM is completely different and original from the spherical motor researches in the literature and it can be preferred in robotic/manipulator/simulator applications as a innovative actuator system.(c) 2023 Karabuk University. Publishing services by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).Öğe Experimental Investigation of Full-Order Observered and LQR Controlled Building-Like Structure Under Seismic Excitation(Trans Tech Publications Ltd, 2013) Tinkir, Mustafa; Kalyoncu, Mete; Sahin, YusufIn this paper, the dynamic behaviour of two degree of freedom building-like structure system against unexpected input such as seismic excitation is considered by experimentally. Proposed system consists of two floors structure with active mass damping (AMD) and shaker. Passive and active mode deflection responses of the floors are investigated and also a cart is used to suppress vibrations, which moves linear direction and is mounted on the second floor. PV (proportional and velocity) control of the cart is realized in passive mode. Moreover LQR (Linear Quadratic Regulator) control is designed to control the cart in active mode while system under excitation. For this aim a full-order observer is designed and implemented to control strategy. Displacements of cart, deflections and accelerations results of the floors are presented separately for passive and active mode responses of the system in the form of graphics.Öğe Force Feedback Control of Lower Extremity Exoskeleton Assisting of Load Carrying Human(Trans Tech Publications Ltd, 2014) Sahin, Yusuf; Botsali, Fatih Mehmet; Kalyoncu, Mete; Tinkir, Mustafa; Onen, Umit; Yilmaz, Nihat; Baykan, Omer KaanLower extremity exoskeletons are wearable robot manipulators that integrate human intelligence with the strength of legged robots. Recently, lower extremity exoskeletons have been specifically developed for rehabilitation, military, industrial applications and rescuing, heavy-weight lifting and civil defense applications. This paper presents controller design of a lower-extremity exoskeleton for a load carrying human to provide force feedback control against to external load carried by user during walking, sitting, and standing motions. Proposed exoskeleton system has two legs which are powered and controlled by two servo-hydraulic actuators. Proportional and Integral (PI) controller is designed for force control of system. Six flexible force sensors are placed in exoskeleton shoe and two load cells are mounted between the end of the piston rod and lower leg joint. Force feedback control is realized by comparing ground reaction force and applied force of hydraulic cylinder. This paper discusses control simulations and experimental tests of lower extremity exoskeleton system.Öğe Hybrid Controller Design for Two-Floors Structure Against Northridge Earthquake(Trans Tech Publications Ltd, 2013) Tinkir, Mustafa; Kalyoncu, Mete; Sahin, YusufIn this study, an adaptive neural network based fuzzy logic controller (ANNFLC) and a PI (Proportional and Integral) controller are used together as hybrid controller for deflection control of two degree of freedom building-like structure system against scaled Northridge Earthquake experimentally. Proposed structure consist of two floors with a shake table and a cart which is mounted on the second floor as active mass damping (AMD) and controlled by hybrid controller. Training and testing data of ANNFLC are determined by using behaviour of PI controlled system against Northridge. Thus, ANNFLC is created and it's control performance is combined with PI controller's effect to achieve small deflection responses of the floors. Obtained hybrid controlled results are compared with passive and PI controlled results and presented in the form of graphics.Öğe An intelligent system approach for surface roughness and vibrations prediction in cylindrical grinding(Taylor & Francis Ltd, 2012) Asilturk, Ilhan; Tinkir, Mustafa; El Monuayri, Hazim; Celik, LeventThis work aims to develop an adaptive network-based fuzzy inference system (ANFIS) for surface roughness and vibration prediction in cylindrical grinding. The system uses a piezoelectric accelerometer to generate a signal related to grinding features and surface roughness. To accomplish such a goal, an experimental study was carried out and consisted of 27 runs in a cylindrical grinding machine operating with an aluminium oxide grinding wheel and AISI 8620 steel workpiece. The workpiece speed, feed rate and depth of cut were used as an input to ANFIS, which in turn outputs surface roughness (Ra) and vibration (a(z)). Different neuro-fuzzy parameters were adopted during the training process of the system in order to improve online monitoring and prediction. Experimental validation runs were conducted to compare the measured surface roughness values with the values predicted online. The comparison shows that the gauss-shaped membership function achieved an online prediction accuracy of 99%.Öğe Investigation of the effect of hydromechanical deep drawing process parameters on formability of AA5754 sheets metals by using neuro-fuzzy forecasting approach(Ios Press, 2015) Tinkir, Mustafa; Dilmec, Murat; Turkoz, Mevlut; Halkaci, H. SelcukAdaptive neural-network based fuzzy logic inference system (ANFIS) is a useful method instead of costly Finite Element Analysis (FEA) in order to reduce investigation cost of forming processes. In this research, the effect of hydromechanical deep drawing (HDD) process parameters on AA5754-O sheet was investigated by FE simulations with analysis of variance (ANOVA) and Adaptive Neuro-Fuzzy Modeling approach. In order to determine the prediction error of the ANFIS model according to FEA, firstly a series of FEA of the HDD process were conducted according to Taguchi's Design of Experiment Method (DOE). The results of the FEA were confirmed by comparing the thickness distributions of the formed cups by experimentally and numerically. Moreover an adaptive neural-network based fuzzy logic inference system (ANFIS) was created according to results of simulation to predict the maximum thinning of AA5754-O sheet without needing FE simulations. The calculation performances of the ANFIS model were determined by comparing the estimated results with the results of the FE simulations. By using the results of the FE simulations which were conducted according to a matrix plan, the effects of the parameters to the thinning of the blank were determined by the analysis of variance (ANOVA) method. ABAQUS and MATLAB/ANFIS/Simulink softwares were used to realize and simulate proposed techniques. Mean error of prediction result of ANFIS is found as 0.89% according to FEA.Öğe Mechanical Design of Lower Extremity Exoskeleton Assisting Walking of Load Carrying Human(Trans Tech Publications Ltd, 2014) Sahin, Yusuf; Botsali, Fatih Mehmet; Kalyoncu, Mete; Tinkir, Mustafa; Onen, Umit; Yilmaz, Nihat; Cakan, AbdullahExoskeletons are used in rehabilitation, military, industrial applications and rescuing, heavy-weight lifting and civil defense applications as well. This paper presents to design of a lower-extremity exoskeleton assisting walking of a load carrying human. Proposed exoskeleton system is designed to be appropriate mechanism with human lower extremity and it operates synchronously with the human realizes. The aim of exoskeleton actuator system is to provide forces against to external load carried by user during walking, sitting, and standing motions. Thus, it supports human walking and significant portion of external load carrying by the user. Also it makes possible to user spend less energy, less stress and fatigue. Proposed work involves the following design steps: kinematic synthesis of the exoskeleton, mechanical and electro-hydraulic system design.Öğe Modeling and Controller Comparison for Quarter Car Suspension System by Using PID and Type-1 Fuzzy Logic(Trans Tech Publications Ltd, 2014) Cakan, Abdullah; Botsali, Fatih Mehmet; Tinkir, MustafaEnsuring vehicle drive comfort and securing drive safety are the leading topics among the most interested issues for researchers in vehicle dynamics area. In this paper, a method utilizing a linear actuator is proposed for active control of the vehicle vibrations which are caused by road profile, intending to improve drive comfort and safety of road vehicles. The mathematical model belonging to the system that is evaluated as two degrees of freedom quarter car suspension system is derived by using Lagrange Equation of Motion and MATLAB/Simulink software. In addition to modeling technique, dynamic model of proposed system is created in MSC-ADAMS software and it is simulated in both Matlab and Adams programs together. Moreover two different controllers are designed, which are PID and Artificial Neural Network Based Fuzzy Logic (ANNFL) control in order to use in active vibration control simulations. Performances of the designed controllers are examined and the suitability of the designed controllers is studied by comparing their performances in case of using two different road profile functions.Öğe Modelling and Controller Design for a Flexible Structure System against Disturbance Effects(Sage Publications Ltd, 2015) Tinkir, Mustafa; Kalyoncu, Mete; Sahin, YusufThe effects of natural hazards such as earthquakes are serious threat to structures and most researchers have studied structural control systems. Vibration and displacement control of structures under seismic excitation are important problems for which a solution is to use structural control against the disturbances. This paper presents modelling and controller design for flexible structure systems against unexpected disturbance effects such as seismic excitation. The proposed system consists of two flexible floors with active mass damper. The system is set up on a shake-table and disturbances are created by the shake-table. Active mass damper consists of a moving mass actuated by a servomotor, which moves linearly and is mounted on the second floor to suppress structural vibrations and displacements. In simulation works, different types of modeling technique are used to obtain dynamic behaviour of the proposed system and control of the simulated system is carried out using SolidWorks and MATLAB/SimMechanics. Moreover linear quadratic regulator and proportional-integral-derivative controllers are designed to control the moving mass in active mode while the system is under excitation. For this purpose a full-order observer is formed and implemented as control strategy. Furthermore acceleration and displacement responses of the floors and displacement of proportional velocity controlled cart are investigated in passive mode. A set of results verifying the modelling technique, controller performance and effectiveness, displacements of cart, displacements and accelerations of the floors are presented and compared separately for passive and active modes in the form of graphics and tables.Öğe Modelling and Controller Design for a Flexible Structure System against Disturbance Effects(Sage Publications Ltd, 2015) Tinkir, Mustafa; Kalyoncu, Mete; Sahin, YusufThe effects of natural hazards such as earthquakes are serious threat to structures and most researchers have studied structural control systems. Vibration and displacement control of structures under seismic excitation are important problems for which a solution is to use structural control against the disturbances. This paper presents modelling and controller design for flexible structure systems against unexpected disturbance effects such as seismic excitation. The proposed system consists of two flexible floors with active mass damper. The system is set up on a shake-table and disturbances are created by the shake-table. Active mass damper consists of a moving mass actuated by a servomotor, which moves linearly and is mounted on the second floor to suppress structural vibrations and displacements. In simulation works, different types of modeling technique are used to obtain dynamic behaviour of the proposed system and control of the simulated system is carried out using SolidWorks and MATLAB/SimMechanics. Moreover linear quadratic regulator and proportional-integral-derivative controllers are designed to control the moving mass in active mode while the system is under excitation. For this purpose a full-order observer is formed and implemented as control strategy. Furthermore acceleration and displacement responses of the floors and displacement of proportional velocity controlled cart are investigated in passive mode. A set of results verifying the modelling technique, controller performance and effectiveness, displacements of cart, displacements and accelerations of the floors are presented and compared separately for passive and active modes in the form of graphics and tables.Öğe A Novel Design of Interval Type-2 Neuro-Fuzzy Controller for Flexible Structure(Kaunas Univ Technol, 2021) Tinkir, Mustafa; Kalyoncu, Mete; Sezgen, Hasmet CagriThe aim of this research is to develop a novel design of interval type-2 neuro-fuzzy (IT2NF) controller for active vibration control of a flexible structure during an earthquake. For this purpose, two adaptive neural network based fuzzy logic controllers are designed and combined to create the novel design of an IT2NF controller to reduce the vibrations of two-storey flexible building model that occur during earthquake disturbance effects. Accordingly, dynamic modeling of a flexible structure is realized and simulated using the MATLAB / SimMechanics. Then, an experimental setup consisting of two-storey flexible structure, active mass damper (AMD) and shaker is established. Additionally, IT2NF controller is implemented in simulation and experimental models, and the effectiveness and performance of the IT2NF controller are tested under the scaled Northridge Earthquake acceleration. The obtained simulations and experimental responses are evaluated in terms of cart displacements, deflections, and accelerations of the flexible floors showing a good agreement between the simulations and the experimental results. The results show that the designed novel IT2NF controller reduced the total deflections of first and second floor by 72.3% and 68.7%, respectively, when compared with the uncontrolled system. Additionally, it is also found that the designed IT2NF controller is able to reduce the accelerations of the first and second floor by 64.8% and 54.6%, respectively. The proposed and designed control method reported in this study can be employed as an active vibration controller for multi-degree of freedom of flexible systems under the disturbances such as earthquake excitations.Öğe Optimisation of a PID controller for a two-floor structure under earthquake excitation based on the bees algorithm(Sage Publications Ltd, 2018) Sen, Muhammed Arif; Tinkir, Mustafa; Kalyoncu, MeteThe control of vibration and displacement in structures under seismic excitation is very challenging, and designing a structural control system against disturbances has drawn great attention. This paper concentrates on implementing the bees algorithm to tune gains of traditional PID controller for active vibration control of a building-like structure with two floors under Northridge Earthquake excitation. Bees algorithm is a diverse method to ensure an efficient solution for optimisation of a controller according to customary trial-error design methods. The main aim of this study is optimisation of K-P, K-I and K-D gains with bees algorithm in order to obtain a more effective PID controller to suppress vibrations of the floors during the earthquake excitation. After definition of the system and bees algorithm, PID controller offline tuned with bees algorithm using mathematical model of system. Moreover, the aim is to compare the performances of the BA with an existing optimisation method, genetic algorithm (GA), implemented on the system. The paper presents the experimental results that were obtained from the structure system to show the efficiency of the tuned PID controller. As a result, the performance and effectiveness of the tuned PID controller are investigated and verified experimentally. The displacements and accelerations of the floors and the cart are decreased considerably. The experimental responses of the system are given in graphical form.Öğe Optimization of torsional vibration damper of cranktrain system using a hybrid damping approach(Elsevier - Division Reed Elsevier India Pvt Ltd, 2021) Sezgen, Hasmet Cagri; Tinkir, MustafaThe focus of this research is to develop the optimum design of torsional vibration damper using hybrid damping approach to decrease the torsional vibrations in the cranktrain system of internal combustion engines (ICE). For this purpose, a double mass rubber and viscous torsional vibration damper (DMRVTVD) are combined. The optimization procedure is carried out using genetic algorithm (GA) to determine the best hybrid damping performance on cranktrain system of a four stroke and four cylinder diesel engine. Accordingly, twelve degrees of freedom lumped mass mathematical model of the proposed crank train system is created. The stiffness and damping coefficients of viscous and rubber materials used in DMRV-TVD model are verified by modal test and finite element natural frequency analysis. Then, the excitation torque is calculated considering the inertia forces and gas force, and Fourier series expansion is performed to obtain the harmonics of driven torque as the input load on the relevant masses. The relative angular deflection of the front end point of the crankshaft is determined. Additionally, in order to decrease the torsional vibrations of the crankshaft, DMRV-TVD model is optimized depending on the viscous material parameters by defining the boundary conditions and objective function of the genetic algorithm. The comparative results show that the developed hybrid design of optimized DMRV-TVD reduced the torsional vibrations by 50.17% when compared to the non-optimized DMRV-TVD. This achieved reduction in the torsional vibrations is expected to increase the engine performance and its durability as well as providing a better driving comfort and fuel efficiency. (C) 2021 Karabuk University. Publishing services by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).Öğe Theoretical Investigation of a Structure for Active Vibration Control with Fuzzy Logic Approach(Trans Tech Publications Ltd, 2014) Gulbahce, Erdi; Celik, Mehmet; Tinkir, MustafaThe main purpose of this study is to prepare mathematical model for active vibration control of a structure. This paper presents the numerical and experimental modal analysis of aluminum cantilever beam in order to investigate the dynamic characteristics of the structure. The results will be used for active vibration control of structure's experimental setup. Experimental natural frequencies are obtained and compared to verify the proposed numerical model by using modal analysis results. MATLAB System Identification Toolbox and ANSYS harmonic response function are used together to estimate beam's equations of motion which include its amplitude, frequency and phase angle values. Moreover, the mathematical model of beam is simulated in MATLAB/Simulink software to determine the dynamic behavior of the proposed system. Furthermore, another prediction model approach with multiple input and single output is used to find the realistic behavior of beam via an adaptive neural-network-based fuzzy logic inference system, in addition, impulse responses of the proposed models are compared and the control block diagram for active vibration control is implemented. As a first iteration, PID type controller is designed to suppress vibrations against the disturbance input. The results of modal analysis, the prediction models, controlled and uncontrolled system responses are presented in graphics and tables for obtaining a sample numerical active vibration control.